Adamas
Adamas
又名:
Adamas/
主演:
池晟 徐智慧 李秀卿 李时媛 
导演:
朴胜宇 
状态:
更新至01集
语言:
韩语
地区:
韩国
上映:
2022-07-27
更新:
22-08-09}
Adamas剧情

一个被隐藏了22年的凶案真相,决定性证据系一把消失的钻石之箭ADAMAS。孪生兄弟(池晟 饰)揭力追查真相,寻找ADAMAS背后隐藏嘅秘密同阴谋,誓要找出杀死继父的真凶。

Adamas相关视频
Adamas相关问答

急求一短篇翻译!(中译英)

Diamond and love origin If you knew the diamond the tradition and it in the human heartstatus, then can understand why the people do want to purchase it, hasit and wears it. Since three has done the year, the diamond is special in people heartstatus. It is the strength symbol, and has the charm which does nothave may resist, causes the person earnestly to pursue. Hands down the diamond is the space star fragment drops the Earth.Also some people said it is Zhu Shen teardrops. It is reported god oflove Qiu bit arrow point is does with the diamond. Also has the fablein the wild valley which the central Asia somewhere person smoke doesnot arrive, the upper berth full diamond, by the predatory birds inthe space patrol, the poisonous snake guards on the place, but thesepoisonous snakes' vision may set at the person to put the deathtrap. A diamond word comes from Greek righteousness " Adamas" Isthe meaning which cannot be conquered (Latin " Diamas" ].The Greek believed in the diamond collects the flame, represents theeternal 爱火, since long-time, has by the cyclopentadiene diamond tois firmly hard, radiant fresh splendor special characteristic,therefore becomes the love symbol which in today world most receiveswelcome. Before the A.D. 2 centuries, according to the ancient Rome'stradition, makes the engagement abstention with a simple iron hoop,the symbolic life and the eternal, this was considered is the humanityuses the ring to do mutually holds the lifelong pledge the start. Before 15 centuries, only has emperor to be able to wear drills 石作the charm amulet, with exorcises evades wicked and brings the luckylabor diamond is the strength, the courage and the invincible elephantmicro. In 1477 before, when the Austrian Mark sago continually grandduke and French suddenly Gen trigram place Princess Masurium Li isbetrothed, receives a letter, in the letter stated: " Date of theengagement to marry, princess must put on inlays has the diamond goldfinger ring " This is the first pair then becomes by the diamondring presents a gift with the marriage contract faith token. To 15century's ends, as a result of the diamond firm faithful symbolsignificance, mutually presents as a gift the diamond ring to becomethe western nation to marry a ceremony part. Became engaged ladies wear the ring on the left ring finger thetradition, may trace the early time the Egyptian population they tobelieve likes the attractive arteries directly passing through theleft ring finger from the heart the fingertip, penetrated a simplesingle grain of diamond ring, the diamond has transmitted in the heartfeelings for the world innumerable men and women, sent out the eternal爱火. From the marriage, to the marriage anniversary commemorationday, the men and women which falls in love all uses the diamond toexpress the cordiality, inlays the full diamond the circular ring,said is " Both of our sentiment not terminus " Representslove of the eternal, this source also admits from the westerntradition for the Oriental, at this point, the people like by thediamond ring achievement offering a gift have become common practice.



matlab应用二步和四步显示的Adamas方法求解下列微分方程的初值问题(用...

给你RK和Adamas一些参考程序:例 9.2 用经典四阶 方法计算:解: %ex9_2.m%四阶经典R-K公式作数值计算clc;F='y-2*x/y';a=0;b=1;h=0.1;n=(b-a)/h;X=a:h:b;Y=zeros(1,n+1);Y(1)=1;for i=1:n x=X(i); y=Y(i); K1=h*eval(F); x=x+h/2; y=y+K1/2; K2=h*eval(F); x=x; y=Y(i)+K2/2; K3=h*eval(F); x=X(i)+h; y=Y(i)+K3; K4=h*eval(F); Y(i+1)=Y(i)+(K1+2*K2+2*K3+K4)/6;end %准确解temp=[];f=dsolve('Dy=y-2*x/y','y(0)=1','x');df=zeros(1,n+1);for i=1:n+1 temp=subs(f,'x',X(i)); df(i)=double(vpa(temp));enddisp(' 步长 四阶经典R-K法 准确值');disp([X',Y',df']);%画图观察效果figure;plot(X,df,'k*',X,Y,'--r');grid on;title('四阶经典R-K法解常微分方程');legend('准确值','四阶经典R-K法'); 运行上述程序得到如下结果: 步长 四阶经典R-K法 准确值 0 1.000000000000000 1.000000000000000 0.100000000000000 1.095445531693094 1.095445115010332 0.200000000000000 1.183216745505993 1.183215956619923 0.300000000000000 1.264912228340392 1.264911064067352 0.400000000000000 1.341642353750372 1.341640786499874 0.500000000000000 1.414215577890085 1.414213562373095 0.600000000000000 1.483242222771993 1.483239697419133 0.700000000000000 1.549196452302143 1.549193338482967 0.800000000000000 1.612455349658987 1.612451549659710 0.900000000000000 1.673324659016256 1.673320053068151 1.000000000000000 1.732056365165566 1.732050807568877作出的函数图形如下:这个结果比上述两种方法精度高得多. 例 9.3 分别就和确定线性多步法的系数,使方法具有最高的截断误差阶.解:直接按公式求解相应系数即可,本题未知系数较多,且数目不确定,不适合编制自动求解程序.先对情况讨论,按线性多步法的步骤得到如下方程组:>> [a0,b0,b1]=solve('a0=1','b0+b1=1','2*b1=1')a0 =1b0 =1/2b1 =1/2 再由误差公式的表达式得到误差阶数:>>C3=1/factorial(3)*(a0)-1/factorial(3-1)*(b1) C3 = -1/12 对情形类似讨论,本文不再给出解答. 例 9.4 利用四步四阶显式法计算:解:前三步用经典四阶R-K法启动计算.编制如下求解程序: %ex9_4.m%Adams四步四阶显式法作常微分方程数值计算%[a,b]为求解区间,h为步长clc;F='y-2*x/y';a=0;b=1;h=0.1;n=(b-a)/h;X=a:h:b;Y=zeros(1,n+1);Y(1)=1;%以四阶R-K法启动for i=1:3 x=X(i); y=Y(i); K1=h*eval(F); x=x+h/2; y=y+K1/2; K2=h*eval(F); x=x; y=Y(i)+K2/2; K3=h*eval(F); x=X(i)+h; y=Y(i)+K3; K4=h*eval(F); Y(i+1)=Y(i)+(K1+2*K2+2*K3+K4)/6;end%Adams四步四阶显式法for i=4:n x=X(i-3); y=Y(i-3); f1=eval(F); x=X(i-2); y=Y(i-2); f2=eval(F); x=X(i-1); y=Y(i-1); f3=eval(F); x=X(i); y=Y(i); f4=eval(F); Y(i+1)=Y(i)+h*(55*f4-59*f3+37*f2-9*f1)/24;end %准确解temp=[];f=dsolve('Dy=y-2*x/y','y(0)=1','x');df=zeros(1,n+1);for i=1:n+1 temp=subs(f,'x',X(i)); df(i)=double(vpa(temp));enddisp(' 步长 Adams四步四阶显式法 准确值');disp([X',Y',df']);%画图观察效果figure;plot(X,df,'k*',X,Y,'--r');grid on;title('Adams四步四阶显式法解常微分方程');legend('准确值','Adams四步四阶显式法'); 程序运行结果: 步长 Adams四步四阶显式法 准确值 0 1.000000000000000 1.000000000000000 0.100000000000000 1.095445531693094 1.095445115010332 0.200000000000000 1.183216745505993 1.183215956619923 0.300000000000000 1.264912228340392 1.264911064067352 0.400000000000000 1.341551759049205 1.341640786499874 0.500000000000000 1.414046421479413 1.414213562373095 0.600000000000000 1.483018909732277 1.483239697419133 0.700000000000000 1.548918873971137 1.549193338482967 0.800000000000000 1.612116428793334 1.612451549659710 0.900000000000000 1.672917033446480 1.673320053068151 1.000000000000000 1.731569752635566 1.732050807568877 它与准确值的计算结果对比图如下:由图上可看到线性多步法的精度还是很高的.它的优点在于每次计算量大大减小,缺点是不能自启动,需借助其他方法启动. 例 9.5 利用预测—校正公式法求解:解:前面三步还是用经典四阶R-K方法启动计算,求解程序如下: %ex9_5.m%Adams校正-预测法作常微分方程数值计算%[a,b]为求解区间,h为步长clc;F='y-2*x/y';a=0;b=1;h=0.1;n=(b-a)/h;X=a:h:b;Y=zeros(1,n+1);%Adams预测值Y(1)=1;%以四阶R-K法启动for i=1:3 x=X(i); y=Y(i); K1=h*eval(F); x=x+h/2; y=y+K1/2; K2=h*eval(F); x=x; y=Y(i)+K2/2; K3=h*eval(F); x=X(i)+h; y=Y(i)+K3; K4=h*eval(F); Y(i+1)=Y(i)+(K1+2*K2+2*K3+K4)/6;end%Adams校正-预测法Y1=Y;%Adams校正值for i=4:n x=X(i-3); y=Y(i-3); f1=eval(F); x=X(i-2); y=Y(i-2); f2=eval(F); x=X(i-1); y=Y(i-1); f3=eval(F); x=X(i); y=Y(i); f4=eval(F); Y(i+1)=Y(i)+h*(55*f4-59*f3+37*f2-9*f1)/24;%Adams预测值 x=X(i+1); y=Y(i+1); f0=eval(F); Y1(i+1)=Y(i)+h*(9*f0+19*f4-5*f3+f2)/24;%校正值end %准确解temp=[];f=dsolve('Dy=y-2*x/y','y(0)=1','x');df=zeros(1,n+1);for i=1:n+1 temp=subs(f,'x',X(i)); df(i)=double(vpa(temp));enddisp(' 步长 Adams预测值 Adams校正值 准确值');disp([X',Y',Y1',df']);%画图观察效果figure;plot(X,df,'k*',X,Y,'-.r',X,Y1,'--b');grid on;title('Adams校正-预测法解常微分方程');legend('准确值','Adams预测值','Adams校正值'); 运行上述程序得到如下结果: 步长 Adams预测值 Adams校正值 准确值 0 1.000000000000000 1.000000000000000 1.000000000000000 0.100000000000000 1.095445531693094 1.095445531693094 1.095445115010332 0.200000000000000 1.183216745505993 1.183216745505993 1.183215956619923 0.300000000000000 1.264912228340392 1.264912228340392 1.264911064067352 0.400000000000000 1.341551759049205 1.341641357193254 1.341640786499874 0.500000000000000 1.414046421479413 1.414107280831795 1.414213562373095 0.600000000000000 1.483018909732277 1.483044033257615 1.483239697419133 0.700000000000000 1.548918873971137 1.548934845800237 1.549193338482967 0.800000000000000 1.612116428793334 1.612129054676922 1.612451549659710 0.900000000000000 1.672917033446480 1.672925295781879 1.673320053068151 1.000000000000000 1.731569752635566 1.731575065330948 1.732050807568877 它们的曲线如下:上述曲线观察得不是很清楚,我们进行局部放大后得到如下效果图:相对预测值,校正值的曲线更接近精确值的曲线.